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Abstract. Evolution equations like the heat or diffusion equation or the Schrödinger equation
can be associated with stochastic processes. In this paper we study the relation between equations
of the form∂tu = Lu and Ĺevy processes (i.e. quantum stochastic processes with independent
and stationary increments) on quantum groups and braided groups. Solutions of such equations
are calculated as Appell systems. Wigner distributions of these processes are defined and it is
proven that they satisfy a Fokker–Planck equation.

1. Introduction

Quantum groups are unital associative algebras, equipped with an additional structure, the
coalgebra structure, that allows one to define notions like increments, translations, etc,
and thus allows one to define analogues of many (physically!) important concepts for
stochastic processes on vector spaces or groups, as, for example, the notion of stationary
and independent increments that is at the basis of Brownian motion and diffusions, or the
various characterizations of Gauss distributions. We recommend recent books by Majid
[13] (in particular, ch 5), Meyer [14] and Schürmann [15] as an introduction to this field
(see also [16]).

In this paper we consider stochastic processes on quantum groups that are related to
evolution equations of the form

∂tu = Lu
with some difference-differential operatorL. For the equations considered in section 3,u

is an element of a quantum or braided groupA. We recall that solutions of these equations
can be given as Appell systems or shifted moments of the associated process, and show
how these can be calculated explicitly on theq-affine group, the braided line and plane,
and a braided analogue of the Heisenberg–Weyl group. These calculations are original.

In section 4, which is the main contribution of this paper, we define a Wigner map from
functionals on a quantum group or braided group to a ‘Wigner’ density on the undeformed
space. We prove that the densities associated in this way to Lévy processes (i.e. processes
with independent and stationary increments) satisfy a Fokker–Planck-type equation. In the
one-dimensional case these coincide with the evolution equations of section 3, but in the
general case we get new equations.

We close with a few final remarks in section 5.
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2. Preliminaries

Notation. Let q ∈ C. We setqn =
∑n−1

ν=0 q
ν , i.e.qn = n if q = 1, andqn = (qn−1)/(q−1)

otherwise. We will also useqn! = 5n
ν=1qν , the q-exponential series exq =

∑∞
n=0 x

n/qn! (if
q is not a root of unity), and theq-binomial coefficients defined by the recurrence relation[

m+ 1
µ

]
q

=
[
m

µ

]
q

+ qm−µ+1

[
m

µ− 1

]
q

[
m

0

]
q

=
[
m

m

]
q

= 1.

If q is not a root of unity one has[
m

µ

]
q

= qm!

qµ! · qm−µ!
.

For the definition of quantum groups and braided groups (or Hopf algebras and braided
Hopf algebras) see [13]. We recall a few examples which we shall use to illustrate our
approach. For the origin of the first two examples see [11, 12], the third is well known
in the quantum group literature, while it seems that the last was first studied (as a braided
Hopf algebra) by the present authors [8] (but see also the appendix of [2]).

The braided lineRq . Let q ∈ C, q not a root of unity. The braiding9(xn⊗xm) = qnmxmxn
turns the algebra of polynomials in one variable into a braided Hopf algebra (with
1x = x + x ′). This Hopf algebra, denoted byRq , can be dually paired with itself,
set 〈pn, xm〉 = qn!δnm. The dual copy acts onRq via ρ(u)a = ∑〈u, a(1)〉a(2), where
1a = ∑

a(1) ⊗ a(2). One finds thatρ(p) is the q-difference operatorδq : f (x) 7→
(f (qx)− f (x))/x(q − 1).

The braided planeC2|0
q . The braided plane is the braided Hopf algebra with two

q-commuting primitive generatorsx, y and braid relationsx ′x = q2xx ′, x ′y = qyx ′,
y ′x = qxy ′ + (q2− 1)yx ′, y ′y = q2yy ′.

C2|0
q is dually paired withC2|0

q−1 and thus there are partial derivatives,

∂1x
nym = (q2)nx

n−1ym ∂2x
nym = (q2)mq

nxnym−1.

The q-affine groupAff q . Let α, β ∈ C, st. q = eαβ is not a root of unity. Theq-affine
group Affq is the Hopf algebra with two generatorsa, b and relations

ba = (a + β)b 1a = a + a′ 1b = b + eαab′

and trivial braiding, i.e.9 = τ (the twist map). We will denote the generators of the dual
of Aff q , i.e.Uq(Aff ), by X andY , and the dual action byρ.

The braidedq-Heisenberg-Weyl groupHWq . We give a braided Hopf algebra structure
for the algebra known as theq-oscillator algebra orq-Heisenberg–Weyl algebra, i.e. the
algebra defined byac − qca = 1l, 1l central. We can regard this algebra as generated by
two generatorsa andc with the cubic relations

aac + qcaa = (1+ q)aca acc + qcca = (1+ q)cac
q ∈ C, q not a root of unity. If we define the braiding bya′a = qaa′, a′c = ca′,
c′a = (1/q)ac′, c′c = qcc′, then1a = a+a′,1c = c+c′ defines an algebra homomorphism
from HWq to HWq⊗̃HWq . The braided bialgebra defined in this way also admits an
antipode, defineS by S(a) = −a, S(c) = −c, and extend viaS ◦m = m ◦9 ◦ (S ⊗ S).
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If we introduce a third generator, for example byac− qca = (1− q)b or d = ac− ca,
then {anbmcr; n,m, r ∈ N} and {andmcr; n,m, r ∈ N} are bases (Poincaré–Birkhoff–Witt
bases) of HWq (b is central, andd satisfiesad = qda anddc = qcd).

A ∗-structure is defined bya∗ = c, c∗ = a, if q is real.
If we define partial differential operators on HWq via

ρ(x)a = 1 ρ(x)c = 0

ρ(z)a = 0 ρ(z)c = 1

and extend with the Leibnitz rules

ρ(x)(au) = u+ qaρ(x)u ρ(x)(cu) = (1/q)cρ(x)u
ρ(z)(au) = aρ(z)u ρ(z)(cu) = u+ qcρ(z)u

for u ∈ HWq , thenρ(x) andρ(z) satisfy again the HWq-relations, and〈X, u〉 = ε(ρ(X)u)
defines a dual pairing.

Quantum stochastic processes.A quantum probability space is usually defined as a pair
(A,8) consisting of a∗-algebraA and a state (i.e. a normed positive linear functional)8 on
A. A quantum random variablej over a quantum probability space(A,8) on a ∗-algebra
B is simply a ∗-algebra homomorphismj : B → A. A quantum stochastic process is a
family of quantum random variables over the same quantum probability space and taking
values in the same algebra.

Here we focus on processes with independent increments indexed byR+; they are
characterized by their one-dimensional distributions{ϕt ; t ∈ R+}. If the increments are
also stationary, then the one-dimensional distributions form a convolution semi-group, i.e.
ϕ0 = ε andϕs ? ϕt = ϕs+t . Such processes are called white noise or Lévy processes [15].

In this case the transition operators associated with the process are defined by

Ut(ϕ) : a 7→
∑

ϕt (a
(1))a(2) if 1a =

∑
a(1) ⊗ a(2).

These operators form a semi-group,Us(ϕ) ◦ Ut(ϕ) = Us+t (ϕ), andU0(ϕ) = id.
We will say thatϕ is associated with the equation(∂t − L)u = 0, if Ut(ϕ) = etL, and

call L the generator ofϕ in this case.

3. Appell systems

We will consider equations of the form

∂tu = Lu (1)

whereL : A→ A is a differential operator, independent oft , for example

∂tu = (aδ2
q + bδq)u on Rq

∂tu = (∂2
1 + ∂2

2)u on C2|0
q

∂tu = (ρ(X)2+ ρ(Y )2)u on Affq
∂tu = (ρ(x)2+ ρ(z)2)u on HWq .

In the first equation,L is a general second-orderq-difference operator, but for the explicit
calculations we shall assume thata andb are constants.

In the second equation we have an analogue of the Laplacian, the operator in the third
equation is related to the Gegenbauer or ultraspherical polynomials, see for example [6]. In
the fourth equation we have an analogue of the Kohn–Laplacian on the Heisenberg group.
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An equation of the form (1) gives rise to a transition operator, formally written as etL.
If the functionalε ◦ L is conditionnally positive (with respect to an involution onA), then
ε ◦ etL defines a convolution semi-group of states and thus a Lévy process (if the braiding
is different from the twist map, then we have to impose the additional condition thatε ◦ L
is 9-invariant, i.e. that(ε ◦L⊗ φ) ◦9 = φ ⊗ ε ◦L for all φ ∈ A∗). We can still associate
a process withL, even if ε ◦ L is not conditionally positive, but in this case the state fails
to be positive, see [3].

Appell systems on Lie groups have been studied in [4], quantum groups were considered
in [3]. The results presented here for braided groups are original. We recall the definition
of Appell systems, see [3, 7].

Definition 1. We define the (left) Appell polynomials on a braided groupA with respect
to a semi-group of functionals{ϕt } by

hk = (ϕt ⊗ id) ◦1ak
i.e. hk = Ut(ϕ)(ak), for a fixed basis{ak} of A.

If L is the generator of{ϕt }, thenhk solves

∂thk = Lhk.
For other interesting properties, for example, raising operators, or in relation to matrix
elements, see [3, 7].

3.1. Example: the braided line

The Appell polynomials associated with the functionalϕt = exp(tL) where

L = a2

1+ q p
2+ bp

are

hk(x; t) = (ϕt ⊗ id) ◦1xk =
k∑
ν=0

[
k

ν

]
q

ϕt (x
ν)xk−ν

=
k∑
ν=0

qk!Hν(bt,−2a2t/(1+ q))
qk−ν !ν!

xk−ν

whereHν denotes the Hermite polynomials, defined by

Hp(x, t) =
[p/2]∑
k=0

(
p

2k

)
(2k)!

2kk!
xp−2k(−t)k.

These Appell polynomials are solutions of

∂tu = a2

1+ q δ
2
qu+ bδqu.

For b = 0, a = √(1+ q)/2 the Appell polynomials simplify to

hk(x; t) =
[k/2]∑
ν=0

qk!tνxk−2ν

qk−2ν !2ν !ν!
.

These polynomials are aq-analogue of the Hermite polynomials.
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3.2. Example: the braided plane

We chooseφt = exptL with

L = 1

1+ q2
(∂2

1 + ∂2
2).

We get

φt =
∞∑
r=0

t r

(1+ q2)rr!

r∑
ν=0

[
r

ν

]
q−4

∂2ν
2 ∂

2(r−ν)
1

since∂2∂1 = q−1∂1∂2. This leads to the following formula for the Appell polynomials:

hrm(x, y; t) = exp(tL)xrym

=
[r/2],[m/2]∑
ν,µ=0

[ µ+ν
ν

]q−4(q2)r !(q2)m!q2µ(r−2ν)tµ+ν

(q2)r−2ν−1!(q2)m−2µ−1!(1+ q2)µ+ν(µ+ ν)! x
r−2νym−2µ.

These polynomials solve the evolution equation

∂tu = 1

1+ q2
(∂2

1 + ∂2
2)u

where∂1, ∂2 can be defined by

∂1f (x, y) = f (q2x, y)− f (x, y)
x(q2− 1)

∂2f (x, y) = f (qx, q2y)− f (qx, y)
y(q2− 1)

.

3.3. Example: theq-affine group

We can use the generalized Gegenbauer polynomials defined in [6]

Chn(x) =
[n/2]∑
ν=0

(h)n−ν
qn−2ν

(−1)ν

ν!
(2x)n−2ν

and the representationρh(X) = α(x∂x + h), ρh(Y ) = iαδx to calculate the moments of
8t = exp( 1

2t (X
2+ Y 2)). These polynomials are eigenfunctions of

Sh = (x∂x + h)2− δ2
x = ρh(X)2+ ρh(Y )2 i.e. ShC

h
n(x) = (n+ h)2Chn(x)

and their inversion formula is

xn = qn!

2n

[n/2]∑
k=0

h+ n− 2k

(h)n−k+1k!
Chn−2k(x).

Using the Feynman–Kac-type formula (cf [3])

8t(e
aρh(X) ebρh(Y )q xn) = e

1
2 t (ρh(x)

2+ρh(Y )2)xn

and comparing the coefficients ofxn−2r we get

8t(e
(n−2r+h)αab2r ) = q2r

α2r

r∑
k=0

(h+ n− 2k)(h)n−r−k(−1)k

4r (h)n−k+1k!(r − k)! e(n−2k+h)2α2t/2 for n > 2r

8t(e
(n−2r+h)αab2r+1) = 0 for n > 2r + 1.
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Differentiating ν times with respect toh and settingh = m − µ + 2r − n, we obtain all
moments that are needed to calculate the Appell functions

hnm(a, b, t) = 8t(1(a
nbm)) =

n∑
ν=0

m∑
µ=0

(
n

ν

)[
m

µ

]
q

8t(a
ν e(m−µ)αabµ)an−νbm−µ.

3.4. Example: the braidedq-Heisenberg–Weyl group

ConsiderL = x2+ z2. Then

etL =
n∑
ν=0

2(n−ν)∧2ν∑
κ=0

Cnν,κ t
n

n!
z2(n−ν)−κyκx2ν−κ

where the coefficientsCnν,κ are determined by the recurrence relations

Cn+1
ν,κ = Cnν−1,κ + q2κCnν,κ + q2ν−κ+1q2q

κ−1Cnν,κ−1+ q2ν−κ+2q2ν−κ+1C
n
ν,κ−2.

For κ = 0 we have the binomial coefficientsCnν,0 = ( nν ). This allows us to calculate

hnmr(t) = etL(anbmcr)

using, for example, the dual pairing

〈zrymxn, an′bm′cr ′ 〉 = δnn′δmm′δrr ′qn!qm!qr !.

4. Densities

For one single variable, or in the commutative case, one can use Bochner’s theorem to
associate a density to a quantum random variable, cf [14].

We now want to associate joint densities to several non-commutating variables, along the
line of Wigner distributions [17]. We will map functionals on an algebra withn generators
to measures onRn. Equivalently, we can ask for a map from functions onRn (e.g.,
polynomials) to elements of the algebra.

Consider the following diagram:

Wigner
QS −→ CS

Duality l l Duality
QO ←− CO

Weyl

where QS is (the linear span of) the set of quantum states, CS is (the linear span of) the
set of classical states, QO is the set of quantum observables and CO is the set of classical
observables.

We want the following similar diagram:

‘Wigner’
U −→ M(X)

q-Fourier l l Fourier
A ←− C(X)

‘Weyl’

whereX is the undeformed space or group, andM(X) denotes the (convolution) algebra
of (signed) measures onX, C(X) the algebra of continuous functions onX, andA andU
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the quantum group and algebra, respectively. Theq-Fourier transformation (with respect to
an integral

∫
A onA) is defined by

FA(u) =
∫
A
(u exp)

where exp is the exponential or coevalution map ofA and U , see [9, 10]. We have∫
A(ab) = 〈FA(a), b〉, and thus in this setting a density (with respect to

∫
A) of a functional

8 ∈ A∗ can, at least in principle, be calculated with the inverse Fourier transform,
ρ8 = F−1

A (8). A more detailed discussion, including an explicit example onRq , can
be found in [7].

Here we shall use the right-hand side of the diagram to introduce densities that ‘live’
on the classical, i.e. undeformed, group or space. Following Anderson [1], we fix a set of
generatorsx1, . . . , xn of A and define the Weyl map [16] on polynomialsuk1

1 . . . u
kn
n by

W(u
k1
1 . . . u

kn
n ) =

k1! . . . kn!

k!

∑
π∈Sk

xπ(1) . . . xπ(k)

wherek = k1 + · · · + kn. Other definitions are possible, for exampleWW : uk1
1 . . . u

kn
n 7→

x
k1
1 . . . x

kn
n (‘Wick’), or WAW : uk1

1 . . . u
kn
n 7→ xknn . . . x

k1
1 (‘anti-Wick’), or alsoWq−exp defined

by eu·v 7→ exp(x|v). However,Wq−exp will not leave the marginal distributions unchanged.
In fact,W is uniquely determined by the conditionsW(ui) = xi and

W((a1u1+ · · · + anun)k) = (a1W(u1)+ · · · + anW(un))k

and thus onlyW ∗ will give the correct marginal distributions for all linear combinations
of the generators. Ordered monomials like the ‘Wick’ or ‘anti-Wick’ map still lead to the
right marginal distributions for the generators.

The Wigner mapW ∗ is defined by the condition

〈8,W(u)〉 =
∫
u dW ∗(8)

i.e. as the dual of the Weyl map. The Fourier transform of the measureW ∗(8) is

g8(v) = F(W ∗(8))(v) =
∫

eiu·v dW ∗(8) = 〈8,W(eiu·v)〉

where we have assumed that we can interchange the limits involved, and that this series
defines an analytic function. Note that here

∫
andF denote integration and the Fourier

transform onX, respectively.
If the functionals8t form a convolution semigroup, then the associated Wigner densities

satisfy an evolution equation or Fokker–Planck equation.

Proposition 2. Let {8t ; t ∈ R+} be a convolution semigroup with generatorL, i.e.
d8t/dt = L8t = 8tL. Suppose further thatW is invertible. Then the Wigner distribution
of 8t satisfies

d

dt
W ∗(8t) = ρ̃(L)∗W ∗(8t)

with ρ̃(X) = W−1 ◦ ρ(X) ◦W and ρ̃(X)∗ defined by duality.
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Proof. Differentiate

〈8t,W(u)〉 =
∫
u dW ∗(8t)

with respect tot ; on the right-hand side we get
∫
u d(dW ∗(8t))/dt , while the left-hand side

gives

d

dt
〈8t,W(u)〉 = 〈L8t,W(u)〉 = 〈8t, ρ(L)W(u)〉 = 〈8t,W(ρ̃(L)u)〉

=
∫
ρ̃(L)u dW ∗(8t) =

∫
u d(ρ̃(L)∗W ∗(8t)).

4.1. Example: the braided line

Here we have only one variable, and the algebra is commutative, so the Weyl map is just
W : un 7→ xn. The Fourier transform of the functional8 =∑∞n=0 anp

n is thus

g8(u) = 〈8, eiux〉 =
∞∑
n=0

anqn!(iu)n

n!

where we have assumed that the regularity conditions necessary for interchanging the limits
are satisfied. For example, for8a = eap, i.e. the functional determined by8a(e

x|p
q ) = eap

(where ex|pq =
∑∞

n=0 x
npn/qn!) we get

g8a (u) =
∞∑
n=0

qn!(iau)n

(n!)2
.

We needρ̃(p)∗ to be able to give the form of the Fokker–Planck equation. Because
of the simple form ofW we haveρ̃(p) = δ. The adjoint of theq-difference operator is a
multiple of theq-difference withq replaced byq−1,

δ∗f (x) = −1

q

f (q−1x)− f (x)
x(q−1− 1)

= −1

q
δ1/qf (x)

so that the Wigner densityηt (dx) = dW ∗(8t) of the semigroup with generatorL =∑ cnp
n

satisfies

∂tηt =
∑ (−1)ncn

qn
δn1/qηt .

4.2. Example: the braided plane

In order to determineW we calculate(a1x + a2y)
N , the coefficient ofan1a

m
2 is the image

of un1u
m
2 . We get

W : un1u
m
2 7→

[ n+m
n

]

(
n+m
n
)
qxnym

and thus

g8(v1, v2) =
∞∑

n,m=0

[ n+m
n

]q
(n+m)! in+m〈8, xnym〉vn1vm2 .

For the Gauss functionals in the sense of Bernstein (8(xnym) = znδm,0 or zmδn,0, see [8])
we getg8(v) = eizv1 or g8(v) = eizv2, i.e.W ∗(8) is a Dirac mass in (z, 0) or (0, z).
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To write down the Fokker–Planck equations for Wigner distributions we need the
representatioñρ. For the two generators we get

∂̃1u
n
1u
m
2 = n

qn+m
n+mu

n−1
1 um2

∂̃2u
n
1u
m
2 = mqn

qn+m
n+mu

n
1u
m−1
2 .

4.3. Example: theq-affine group

We get

W : un1u
m
2 7→

n∑
ν=0

n!m!

(n+m)!A
n+m
n,ν β

n−νaνbm

whereANnν are determined byANnν = 0 if n > N or ν > n or n < 0, AN00 = 1, ANNν = δNν ,
and

AN+1
nν = ANn−1,ν−1+ (N + 1− n)ANn−1,ν + ANnν.

For the special case where the two lower indices are identical, we getANnn = (Nn ).
The Weyl map and its inverse are characterized by

W : ea1u1+a2u2 7→ ea1a+a2b = ea1a e((e
a1β−1)/a1β)a2b

W−1 : eb1a eb2b = eb1a+(βb1b2/(eb1β−1))b 7→ eb1u1+(βb1b2/eb1β−1))u2.

This allows us to write dowñρ and thus the Fokker–Planck equation for any Lévy process.
ForX we simply getρ̃(X) = ∂/∂u1; the expression for̃ρ(Y ) is more complicated.

4.4. Example: theq-Heisenberg–Weyl algebra

The q-Heisenberg–Weyl algebra HWq can be treated in the same way. Choosea, b, c as
generators of HWq , then the Weyl map is given by

W : un1u
m
2 u

r
3 7→

n∧r∑
k=0

n!m!r!Dn+m+r
n,m,k

(n+m+ r)! a
n−kbm+kcr−k

where the coefficientsDn+m+r
n,r,k are defined by

DN
n,r,k = 0 if n < 0 or r < 0 or n+ r > N or k < 0 or k > n ∧ r

DN
n,0,0 =

(
N

n

)
if 0 6 n 6 N

DN
0,r,0 =

(
N

r

)
if 0 6 r 6 N

and the recurrence relation

DN+1
n,r,k = DN

n,r,k +DN
n,r−1,k + qk−rDN

n−1,r,k + (q−1)r−k+1

(
1− 1

q

)
DN
n−1,r,k−1.
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5. Conclusion

We have given a relation between stochastic processes and evolution equations on
quantum/braided groups, and given illustrations for several examples. Two types of
evolution equation were considered. First, we let the generator of the process act via the dual
representation on the quantum or braided group itself. Solutions to these evolution equations
are given in terms of Appell systems. We have shown in several examples how they can
be calculated. To find the second kind of evolution equation, we have associated Wigner-
type distributions to the processes and functionals. These distributions are distributions on
the undeformed space, and we thus get evolution equations for ordinary functions. If we
replace the Weyl map by other maps, for example, those corresponding to normal ordering
(‘Wick’ or ‘anti-Wick’) or to q-exponentials, then we can hope to find a simpler expression
for ρ̃ and thus for the Fokker–Planck equation, but the relation between the moments of the
functionals and their ‘Wigner’ distributions becomes more complicated.
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