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Abstract. Evolution equations like the heat or diffusion equation or the &tihnger equation

can be associated with stochastic processes. In this paper we study the relation between equations
of the formd,u = Lu and Lévy processes (i.e. quantum stochastic processes with independent
and stationary increments) on quantum groups and braided groups. Solutions of such equations
are calculated as Appell systems. Wigner distributions of these processes are defined and it is
proven that they satisfy a Fokker—Planck equation.

1. Introduction

Quantum groups are unital associative algebras, equipped with an additional structure, the
coalgebra structure, that allows one to define notions like increments, translations, etc,
and thus allows one to define analogues of many (physically!) important concepts for
stochastic processes on vector spaces or groups, as, for example, the notion of stationary
and independent increments that is at the basis of Brownian motion and diffusions, or the
various characterizations of Gauss distributions. We recommend recent books by Majid
[13] (in particular, ch 5), Meyer [14] and Séhmann [15] as an introduction to this field
(see also [16]).

In this paper we consider stochastic processes on quantum groups that are related to
evolution equations of the form

o,u = Lu

with some difference-differential operatér. For the equations considered in section:3,

is an element of a quantum or braided grodipWe recall that solutions of these equations

can be given as Appell systems or shifted moments of the associated process, and show
how these can be calculated explicitly on theaffine group, the braided line and plane,

and a braided analogue of the Heisenberg—Weyl group. These calculations are original.

In section 4, which is the main contribution of this paper, we define a Wigner map from
functionals on a quantum group or braided group to a ‘Wigner’ density on the undeformed
space. We prove that the densities associated in this wagwy processes (i.e. processes
with independent and stationary increments) satisfy a Fokker—Planck-type equation. In the
one-dimensional case these coincide with the evolution equations of section 3, but in the
general case we get new equations.

We close with a few final remarks in section 5.
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2. Preliminaries

Notation. Letq € C. Weselg, = "5 ¢",i.e.q, =nif ¢ =1, andg, = (¢"—1)/(¢—1)
otherwise. We will also use,! = IT)_,q,, the g-exponential series;e= Yool ox"/qa! (if
g is not a root of unity), and thg-binomial coefficients defined by the recurrence relation

_m+1] :[m] +qm—;,4,+l[ Tl} I:no/l} =|:mi| -1
- s q K q K q q mn q

If g is not a root of unity one has

_mi| _ Qm!
L, and et

For the definition of quantum groups and braided groups (or Hopf algebras and braided
Hopf algebras) see [13]. We recall a few examples which we shall use to illustrate our
approach. For the origin of the first two examples see [11,12], the third is well known
in the quantum group literature, while it seems that the last was first studied (as a braided
Hopf algebra) by the present authors [8] (but see also the appendix of [2]).

The braided linR,. Letg € C, ¢ notaroot of unity. The braiding (x"®x") = g™ x"x"

turns the algebra of polynomials in one variable into a braided Hopf algebra (with
Ax = x + x'). This Hopf algebra, denoted bR,, can be dually paired with itself,
set (p",x™) = q,'8,,. The dual copy acts o, via p(w)a = > (u,aV)a®, where

Aa = Y a® ® a®. One finds thato(p) is the g-difference operatos, : f(x)
(f(gx) = f(x))/x(qg — D).

The braided planeC;°. The braided plane is the braided Hopf algebra with two
g-commuting primitive generators, y and braid relationst’x = ¢%xx’, x'y = gyx/,
Yx =qxy' + (¢® — Dyx', y'y = ¢°yy'.

<C§'° is dually paired withth‘,o1 and thus there are partial derivatives,

m n m—1

alxnym — (qZ)nxn—ly azxnym — (q2)mq xny
The g-affine grouff,. Leta, B € C, st.q = € is not a root of unity. Thez-affine
group Aff, is the Hopf algebra with two generatarsb and relations

ba = (a + B)b Aa=a+ad Ab =b + )

and trivial braiding, i.eW¥ = 7 (the twist map). We will denote the generators of the dual
of Aff,, i.e. U, (Aff), by X andY, and the dual action by.

The braidedg-Heisenberg-Weyl grouplW,. We give a braided Hopf algebra structure
for the algebra known as thg-oscillator algebra og-Heisenberg—Weyl algebra, i.e. the
algebra defined byic — gca = 1, 1 central. We can regard this algebra as generated by
two generatora andc¢ with the cubic relations

aac + gcaa = (14 g)aca acc + gcca = (14 g)cac

g € C, g not a root of unity. If we define the braiding lWa = gad’, a’'c = cd,

ca = (1/q)ac’, c'c = gcc’, thenAa = a+a’, Ac = c+c’ defines an algebra homomorphism
from HW, to HW,®HW,. The braided bialgebra defined in this way also admits an
antipode, define by S(a) = —a, S(c¢) = —c, and extend vilSom =mo W o (S ® S).
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If we introduce a third generator, for example &oy— gca = (1—¢g)b ord = ac — ca,
then{a"b"c";n,m,r € N} and{a"d"c";n,m,r € N} are bases (PoinagarBirkhoff-Witt
bases) of HVY (b is central, and! satisfiesud = gda anddc = gcd).

A *-structure is defined by* = ¢, ¢* = aq, if ¢ is real.

If we define partial differential operators on HWia

p(x)a=1 p(x)c=0
p(z)a=0 p@)c=1
and extend with the Leibnitz rules

p(x)(au) = u + qgap(x)u px)(cu) = (1/q)cp(x)u
p(2)(au) = ap(z)u p(2)(cu) = u + qcp(u

for u € HW,, thenp(x) and p(z) satisfy again the H\Mrelations, and X, u) = (o (X)u)
defines a dual pairing.

Quantum stochastic processesA quantum probability space is usually defined as a pair
(A, ®) consisting of &-algebrad and a state (i.e. a normed positive linear functiodabn

A. A gquantum random variablg¢ over a quantum probability spacel, ®) on a*-algebra

B is simply a*-algebra homomorphisni : B — A. A quantum stochastic process is a
family of quantum random variables over the same quantum probability space and taking
values in the same algebra.

Here we focus on processes with independent increments indexél, pyhey are
characterized by their one-dimensional distributidps r € R.}. If the increments are
also stationary, then the one-dimensional distributions form a convolution semi-group, i.e.
@o = ¢ andg, x ¢, = ¢,.,. Such processes are called white noise evy_processes [15].

In this case the transition operators associated with the process are defined by

Ul(p):ar> Zgo,(a(l))a(z) if Aa = Za(l) Qa®.

These operators form a semi-grodp,(¢) o U, (p) = Uy, (@), andUp(p) = id.
We will say thaty is associated with the equatigh, — L)u = 0, if U,(¢) = €*, and
call L the generator of in this case.

3. Appell systems

We will consider equations of the form

ou = Lu 1)
whereL : A — A is a differential operator, independentffor example

du = (a82 + bdy)u onR,

du = (07 + 05)u on C7°

du = (p(X)?+p(¥)>u  on Aff,

du = (p(x)* + p(2)°)u on HW,.

In the first equationL is a general second-ordgrdifference operator, but for the explicit
calculations we shall assume thatindb are constants.

In the second equation we have an analogue of the Laplacian, the operator in the third
equation is related to the Gegenbauer or ultraspherical polynomials, see for example [6]. In
the fourth equation we have an analogue of the Kohn-Laplacian on the Heisenberg group.
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An equation of the form (1) gives rise to a transition operator, formally writteri’as e
If the functionale o L is conditionnally positive (with respect to an involution gt), then
¢ o €l defines a convolution semi-group of states and thugwy Iprocess (if the braiding
is different from the twist map, then we have to impose the additional conditiore that
is W-invariant, i.e. thale o L@ ¢) o ¥ = p ® e o L for all ¢ € A*). We can still associate
a process with., even ife o L is not conditionally positive, but in this case the state fails
to be positive, see [3].
Appell systems on Lie groups have been studied in [4], quantum groups were considered
in [3]. The results presented here for braided groups are original. We recall the definition
of Appell systems, see [3,7].

Definition 1. We define the (left) Appell polynomials on a braided gradpwith respect
to a semi-group of functionalgy,} by
he = (¢, @ id) o Aay
i.e. hy = U, (¢p)(ay), for a fixed basida;} of A.
If L is the generator ofy,}, thenh; solves
dhy = Lhy.

For other interesting properties, for example, raising operators, or in relation to matrix
elements, see [3,7].

3.1. Example: the braided line

The Appell polynomials associated with the functiopal= exp(tL) where

2

L=-""p>+b
T1ygl TP

are

k
he(xit) = (g ®id) o Axt = m ()t

v=0
qu'H L (bt, —2a2r/(1+q)> ke
v=0 Qk l)

where H, denotes the Hermite polynomials, defined by

[p/2] 2k)!
Hy(x,1) = ; (21;{) (zkk)! P2 )k,

These Appell polynomials are solutions of

2

a
ou = 11g (quu + bdgu.
Forb =0,a = /(1+ q)/2 the Appell polynomials simplify to
k2 1w k=20

(i) =)~

— qr-2,12"0!

These polynomials are ganalogue of the Hermite polynomials.
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3.2. Example: the braided plane
We choosep, = exprL with

_ 2 2
We get
¢t — e |: i| 322\;81 r—v
L 0 e I Y

sinced,»d, = g ~19:9,. This leads to the following formula for the Appell polynomials:

Ry (x, y; 1) = exp(tL)x" y™
B [r/2],[m/2] [Mi—\)]tr4 (qZ)r!(qZ)m!qZ;L(rfb)t/hLv

(qz)r72v71! (qz)m72ufll (1 + 6]2)"+“ (,bL + V)I

These polynomials solve the evolution equation

r—2v_m—2up

y

v,u=0

du = L(af + 82)u
1+4?

whered;, 9, can be defined by
f@%x, y) — fx,y)

nflx,y)=

x(qg2—-1)
fgx, q%y) — f(gx,y)
3 fx,y) = .
2f (x, ) 2= 1)

3.3. Example: the-affine group

We can use the generalized Gegenbauer polynomials defined in [6]

[n/2] _1\Vv
C;l(.x) — Z (h)nfv ( 1) (Zx)n_zv

vl

v—0 qn—2v

and the representatiomy,(X) = a(xd, + h), pp(Y) = iad, to calculate the moments of
@, = exp(3t(X? 4+ Y?)). These polynomials are eigenfunctions of

Sp=(x0 +h)? =82 = py(X)?+ pp(¥)? e SCh(x) = (n + h)C) (x)
and their inversion formula is
o= ‘12_';' S MC”;_%@).
= (Wn—k+1k!
Using the Feynman—Kac-type formula (cf [3])
@, (&7 M) = 2! (P> +pn(V)?) yn

and comparing the coefficients of~% we get

(D[(e(n_zr+h)aab2r) _ q2r i (h+n— Zk)(h)n—r—k(_l)k e(n_2k+h)2a2,/2

aZ b= A (h)yjp1k! (r — k)

@, (e~ Hheapr+ly — forn > 2r + 1.

forn > 2r
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Differentiating v times with respect t& and settingh = m — u + 2r — n, we obtain all
moments that are needed to calculate the Appell functions

ham(@, b, 1) = ®((A@"D") =Y Y ("j) [ﬂ @, (a” em—raapy gy pn—i
q

v=0 u=0

3.4. Example: the braided-Heisenberg—Weyl group

ConsiderL = x2 + z2. Then

2(n—v)A2v
etL _ i n—v C;l’(tl’l

v=0 k=0

p Z2(n7v)7ky/<x2vﬂ(

where the coefficient€’;, are determined by the recurrence relations

n+l __ n 2¢ 0 k—=1,n n
Cv,/c - CU*l,K +q Cv,/c + q2v—k+1929 CU,K*]. + qZV—K+2q2V—K+1Cv,K72'

For x = 0 we have the binomial coefficients) , = (!). This allows us to calculate
Ry (1) = et (anbmcr)

using, for example, the dual pairing

(rmn

zZy x, an’bm/cr’> = 8nn’8mm’8rr’qn!CIm!Qr!~

4. Densities

For one single variable, or in the commutative case, one can use Bochner’s theorem to
associate a density to a quantum random variable, cf [14].

We now want to associate joint densities to several non-commutating variables, along the
line of Wigner distributions [17]. We will map functionals on an algebra withenerators
to measures oR". Equivalently, we can ask for a map from functions B (e.g.,
polynomials) to elements of the algebra.

Consider the following diagram:

Wigner
Qs — Cs
Duality ¢ $  Duality
Q0 <« CO
Weyl

where QS is (the linear span of) the set of quantum states, CS is (the linear span of) the
set of classical states, QO is the set of quantum observables and CO is the set of classical
observables.

We want the following similar diagram:

‘Wigner’

u — M(X)
g-Fourier 3 3 Fourier
A «— C(X)

‘Weyl’

where X is the undeformed space or group, atéi(X) denotes the (convolution) algebra
of (signed) measures oK, C(X) the algebra of continuous functions éh and.4 andi/
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the quantum group and algebra, respectively. Jteurier transformation (with respect to
an integral/, on A) is defined by

Faw) = f (u exp)
A

where exp is the exponential or coevalution map.fand i/, see [9,10]. We have
[A(ab) = (F(a), b), and thus in this setting a density (with respec@fjp of a functional
® e A* can, at least in principle, be calculated with the inverse Fourier transform,
Po = ]-‘Zl(cb). A more detailed discussion, including an explicit exampleRyn can
be found in [7].

Here we shall use the right-hand side of the diagram to introduce densities that ‘live’
on the classical, i.e. undeformed, group or space. Following Anderson [1], we fix a set of
generatorsy, .. ., x, of A and define the Weyl map [16] on polynomiad§1 ...uk" by

kil .. k,!
W(M]i1 by = - Z Xn(l) - - - X (k)

HES/(

wherek = ky + - -- + k,. Other definitions are possible, for examplgy : u’f cooukn
XA xb (WiCK), or Waw bt ub s xbe 8t ((anti-Wick’), or also W, _ex, defined
by € — exp(x|v). However,W,_ex, Will not leave the marginal distributions unchanged.

In fact, W is uniquely determined by the conditiof8(u;) = x; and
W((arus + -+ + apuy)*) = (@W(u1) + -+ + a, W (u,))*

and thus onlyWw* will give the correct marginal distributions for all linear combinations
of the generators. Ordered monomials like the ‘Wick’ or ‘anti-Wick’ map still lead to the
right marginal distributions for the generators.

The Wigner mapW* is defined by the condition

(®, W) = / u AW (®)
i.e. as the dual of the Weyl map. The Fourier transform of the medgti(®) is
8o (V) = F(WH(®))(v) =[ &t AW (@) = (@, W(€"))

where we have assumed that we can interchange the limits involved, and that this series
defines an analytic function. Note that hefeand 7 denote integration and the Fourier
transform onX, respectively.

If the functionals®, form a convolution semigroup, then the associated Wigner densities
satisfy an evolution equation or Fokker—Planck equation.

Proposition 2. Let {®;;r € R,} be a convolution semigroup with generatbr i.e.
do,/dr = L®, = &, L. Suppose further thaV is invertible. Then the Wigner distribution
of &, satisfies

d * _ = * g7
EW (®) = p(L)" W (D))

with 5(X) = W10 p(X) o W and 5(X)* defined by duality.
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Proof. Differentiate
(@;, W(u)) =[udW*(<I>z)

with respect ta; on the right-hand side we ggtu d(dW*(®,))/dz, while the left-hand side
gives

d
o (P W) = (L, W) = (P, p(L)W (W) = (@1, W(H(L)u))

_ / F(LyudW* (@) = / ud(3 (L) W*(®,)).

4.1. Example: the braided line

Here we have only one variable, and the algebra is commutative, so the Weyl map is just
W :u" — x". The Fourier transform of the functiondl = "7, a, p" is thus

go(u) = (O, ") = Z angn! (iu)"

n!
n=0
where we have assumed that the regularity conditions necessary for interchanging the limits
are satisfied. For example, fdr, = €7, i.e. the functional determined bzya(e;"]) = e’

(where 7 = "™ x"p" /q,!) we get
! (lau)"
go, () = Z 1 E

We needp(p)* to be able to give the form of the Fokker—Planck equation. Because
of the simple form ofW we havep(p) = 8. The adjoint of theg-difference operator is a
multiple of theg-difference withg replaced by,

1f(q )~ feo 1

so that the Wigner density, (dx) = dW*(®,) of the semigroup with generatér= Y ¢, p"
satisfies

=D"c, ,
e = Z—q 81/ M-

4.2. Example: the braided plane

In order to determiné¥ we calculate(aix + a>y)V, the coefficient ofajay is the image
of ujuy. We get

n+m]
(n+m ) qxn ym

n

W uful —
and thus

00 [VH—m]q
go(v1, v2) = Z m i (D, X"y v vy

n,m=0

For the Gauss functionals in the sense of Bernst®ix{y™) = z"3,,.0 Or 2"8,.0, See [8])
we getge(v) = €71 or go(v) = €22, i.e. W*(P) is a Dirac mass inz( 0) or (0 z).
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To write down the Fokker—Planck equations for Wigner distributions we need the
representatiors. For the two generators we get

n,om __ dn+m  n-1 m
oujuy =n 1 U
n+m
n,m n Gntm o om—1

52uu_mq uqu
142 nt+m 12

4.3. Example: theg-affine group
We get

n+ml3n—v Vi.m
a’b

lu2f_)z(n+m)| n,v

whereAY, are determined bAY =0if n > Norv>norn <0, Aljy=1, AN, = 8w,
and

AN = AN+ (N+1-mAY + AN

n—21v

For the special case where the two lower indices are identical, we Yjet (’Z).
The Weyl map and its inverse are characterized by

W : ealulJrazuz — ealaJrazb — gha e((e"lﬂfl)/ulﬂ)azb

—1. gha ghab _ e{71a+(ﬁb1b2/(e"1"—l))h — ebllll-‘r(ﬂblbz/eblﬁ—l))uz.

This allows us to write dowm and thus the Fokker—Planck equation for argwy process.
For X we simply geto(X) = 9/dus; the expression fop(Y) is more complicated.

4.4. Example: thg-Heisenberg—\Weyl algebra

The ¢-Heisenberg—\Weyl algebra H\ean be treated in the same way. Choaseé, ¢ as
generators of H\Y, then the Weyl map is given by
n|m|r|Dn+m+r
W ujululy > — Tk gnekpmtker—k
g (m+m+r)!

where the coefficient®, ;" are defined by

DY .=0 ifn<Oorr<Qorn+r>Nork<O0ork>nnar
D%0=<Z> fo<n<N
D&p=<7) fO<r<N

and the recurrence relation

1
N+1 N N k— N -1 N
Dn r+k - n,r,k + Dn,rfl,k +4q anfl,r,k + (C] )r7k+l <1 - 5) anl,r,kfl'
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5. Conclusion

We have given a relation between stochastic processes and evolution equations on
guantum/braided groups, and given illustrations for several examples. Two types of
evolution equation were considered. First, we let the generator of the process act via the dual
representation on the quantum or braided group itself. Solutions to these evolution equations
are given in terms of Appell systems. We have shown in several examples how they can
be calculated. To find the second kind of evolution equation, we have associated Wigner-
type distributions to the processes and functionals. These distributions are distributions on
the undeformed space, and we thus get evolution equations for ordinary functions. If we
replace the Weyl map by other maps, for example, those corresponding to normal ordering
(‘Wick’ or ‘anti-Wick’) or to g-exponentials, then we can hope to find a simpler expression
for o and thus for the Fokker—Planck equation, but the relation between the moments of the
functionals and their ‘Wigner’ distributions becomes more complicated.
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